mTOR: A Key Brain Signaling Mechanism For Rapidly Acting Antidepressants

Reports new study in Biological Psychiatry
Nov 19, 2013 7:50 AM ET

Philadelphia, PA, November 19, 2013 /3BL Media/ – Two years ago, mammalian target of rapamycin or mTOR, a signaling protein, was identified as a key mediator of the antidepressant effects of ketamine, the first rapidly acting antidepressant medication to be identified.

Several years later, a group at the National Institutes of Mental Health Intramural Program reported that scopolamine, a muscarinic acetylcholine receptor antagonist, also produced rapidly appearing antidepressant effects, similar to the actions of ketamine.

Together these findings represent one of the most significant advances in the field of depression in recent years.

Now, new results reported in the current issue of Biological Psychiatry by researchers at the Yale University School of Medicine demonstrate that scopolamine causes rapid activation of mTOR signaling and increased number of synaptic connections in the prefrontal cortex.

The prefrontal cortex is an important brain region, involved in executive and cognitive functioning, decision-making, planning, and the expression of personality. It is also implicated in the pathophysiology and treatment of depression.

“These effects are similar to the actions of ketamine, showing that two drugs with completely different receptor blocking profiles have common downstream actions linked to rapid antidepressant responses,” said Dr. Ronald Duman, senior author on the project. “Moreover, the increase in synaptic connections reverses the deficit caused by stress and depression and thereby reinstates the normal control of mood and emotion.”

“It would be very important to know if all of the new generation of rapidly acting antidepressant medications acted through a final common signaling pathway within neurons. This knowledge might guide insights into why some patients fail to respond to available antidepressants and provide directions for treating depression,” said Dr. John Krystal, Editor of Biological Psychiatry.

The authors agree, noting that these findings suggest that different muscarinic acetylcholine receptor antagonist may be even more effective and cause fewer side effects than scopolamine. Further studies of such agents are already underway.

The article is “Scopolamine Rapidly Increases Mammalian Target of Rapamycin Complex 1 Signaling, Synaptogenesis, and Antidepressant Behavioral Responses” by Bhavya Voleti, Andrea Navarria, Rong-Jian Liu, Mounira Banasr, Nanxin Li, Rose Terwilliger, Gerard Sanacora, Tore Eid, George Aghajanian, and Ronald S. Duman (doi: 10.1016/j.biopsych.2013.04.025). The article appears in Biological Psychiatry, Volume 74, Issue 10 (November 15, 2013), published by Elsevier.

 

# # #

 

Notes for editors
Full text of the article is available to credentialed journalists upon request; contact Rhiannon Bugno at +1 214 648 0880 or Biol.Psych@utsouthwestern.edu. Journalists wishing to interview the authors may contact Dr. Ronald Duman at +1 203 974 7726 or ronald.duman@yale.edu.

The authors’ affiliations, and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, M.D., is Chairman of the Department of Psychiatry at the Yale University School of Medicine, Chief of Psychiatry at Yale-New Haven Hospital, and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry
Biological Psychiatry is the official journal of the Society of Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 4th out of 135 Psychiatry titles and 13th out of 251 Neurosciences titles in the Journal Citations Reports® published by Thomson Reuters. The 2012 Impact Factor score for Biological Psychiatry is 9.247.

About Elsevier
Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier’s online solutions include ScienceDirect, Scopus, Reaxys, MD Consult and Mosby’s Nursing Suite, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai’s Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Media contact
Rhiannon Bugno
Editorial Office
+1 214 648 0880
Biol.Psych@utsouthwestern.edu